Loss of p47phox subunit enhances susceptibility to biomechanical stress and heart failure because of dysregulation of cortactin and actin filaments.

نویسندگان

  • Vaibhav B Patel
  • Zuocheng Wang
  • Dong Fan
  • Pavel Zhabyeyev
  • Ratnadeep Basu
  • Subhash K Das
  • Wang Wang
  • Jessica Desaulniers
  • Steven M Holland
  • Zamaneh Kassiri
  • Gavin Y Oudit
چکیده

RATIONALE The classic phagocyte nicotinamide adenine dinucleotide phosphate oxidase (gp91(phox) or Nox2) is expressed in the heart. Nox2 activation requires membrane translocation of the p47(phox) subunit and is linked to heart failure. We hypothesized that loss of p47(phox) subunit will result in decreased reactive oxygen species production and resistance to heart failure. OBJECTIVE To define the role of p47(phox) in pressure overload-induced biomechanical stress. METHODS AND RESULTS Eight-week-old male p47(phox) null (p47(phox) knockout [KO]), Nox2 null (Nox2KO), and wild-type mice were subjected to transverse aortic constriction-induced pressure overload. Contrary to our hypothesis, p47(phox)KO mice showed markedly worsened systolic dysfunction in response to pressure overload at 5 and 9 weeks after transverse aortic constriction compared with wild-type-transverse aortic constriction mice. We found that biomechanical stress upregulated N-cadherin and β-catenin in p47(phox)KO hearts but disrupted the actin filament cytoskeleton and reduced phosphorylation of focal adhesion kinase. p47(phox) interacts with cytosolic cortactin by coimmunoprecipitation and double immunofluorescence staining in murine and human hearts and translocated to the membrane on biomechanical stress where cortactin interacted with N-cadherin, resulting in adaptive cytoskeletal remodeling. However, p47(phox)KO hearts showed impaired interaction of cortactin with N-cadherin, resulting in loss of biomechanical stress-induced actin polymerization and cytoskeletal remodeling. In contrast, Nox2 does not interact with cortactin, and Nox2-deficient hearts were protected from pressure overload-induced adverse myocardial and intracellular cytoskeletal remodeling. CONCLUSIONS We showed a novel role of p47(phox) subunit beyond and independent of nicotinamide adenine dinucleotide phosphate oxidase activity as a regulator of cortactin and adaptive cytoskeletal remodeling, leading to a paradoxically enhanced susceptibility to biomechanical stress and heart failure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamin2 GTPase and cortactin remodel actin filaments.

The large GTPase dynamin, best known for its activities that remodel membranes during endocytosis, also regulates F-actin-rich structures, including podosomes, phagocytic cups, actin comet tails, subcortical ruffles, and stress fibers. The mechanisms by which dynamin regulates actin filaments are not known, but an emerging view is that dynamin influences F-actin via its interactions with protei...

متن کامل

Cortactin Releases the Brakes in Actin- Based Motility by Enhancing WASP-VCA Detachment from Arp2/3 Branches

Cortactin is involved in invadopodia and podosome formation [1], pathogens and endosome motility [2], and persistent lamellipodia protrusion [3, 4]; its overexpression enhances cellular motility and metastatic activity [5-8]. Several mechanisms have been proposed to explain cortactin's role in Arp2/3-driven actin polymerization [9, 10], yet its direct role in cell movement remains unclear. We u...

متن کامل

p47phox associates with the cytoskeleton through cortactin in human vascular smooth muscle cells: role in NAD(P)H oxidase regulation by angiotensin II.

OBJECTIVE We tested the hypothesis that p47phox associates with the actin cytoskeleton, enabling site-directed activation of NAD(P)H oxidase, and assessed whether these actions influence reactive oxygen species (ROS) generation and signaling by angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) from human resistance and coronary arteries. METHODS AND RESULTS Electroporation of an...

متن کامل

Cortactin Promotes Cell Motility by Enhancing Lamellipodial Persistence

BACKGROUND Lamellipodial protrusion, which is the first step in cell movement, is driven by actin assembly and requires activity of the Arp2/3 actin-nucleating complex. However, it is unclear how actin assembly is dynamically regulated to support effective cell migration. RESULTS Cells deficient in cortactin have impaired cell migration and invasion. Kymography analyses of live-cell imaging s...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 112 12  شماره 

صفحات  -

تاریخ انتشار 2013